Suyash Bagad
Cryptography Engineer
First step towards Aztec 3.0
February 2023
Plaintext
Encryption \((\text{AES})\)
Hashing \((\text{SHA-}256)\)
Binary operation
A set of elements \(\{G_1, G_2, \dots\}\)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(7\)
\(=(1+2)+4\)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(7\)
\(=(1+2)+4\)
\(4+0 = 0 + 4 = 4\)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(7\)
\(=(1+2)+4\)
\(4+0 = 0 + 4 = 4\)
\((3 + x) \text{ mod }8 = 0\)
\(\textcolor{pink}{\text{Associativity}}\) \(\hspace{1.5cm}\textcolor{lightblue}{\text{Identity}}\) \(\hspace{1.5cm}\textcolor{orange}{\text{Inverse}}\)
\(=\{0, 1, 2, \dots, 7\}\)
\(\text{ mod }8\)
\(0\)
\(1\)
\(2\)
\(6\)
\(4\)
\(3\)
\(5\)
\(7\)
\(1+(2+4) = \)
\(7\)
\(=(1+2)+4\)
\(4+0 = 0 + 4 = 4\)
\((3 + x) \text{ mod }8 = 0\)
\(\implies x =5\)
\(\mathbb{G}=\{G, 2G, 3G, 4G, \dots\}\)
\(\mathbb{G}=\{0, 1, 2,3,4\}\)
\(1\)
\(2\)
\(3\)
\(4\)
\(G\)
\(2G\)
\(3G\)
\(4G\)
\(5G\)
\(2\)
\(3\)
\(4\)
\(0\)
\(0\)
\(4\)
\(1\)
\(3\)
\(0\)
\(4\)
\(1\)
\(2\)
\(2\)
\(0\)
\(1\)
\(3\)
\(y^{2}=x^{3}-2x\)
\(y^{2\ }=x^{3}-x+2\)
Addition operator
A set of elements \(\{f_1, f_2, \dots\}\)
Multiplication operator
\(a * (b+c) = a*b \ + \ a*c\)
\(x + y = (x+y) \text{ mod }p\)
\(x * y = (xy) \text{ mod }p\)
\(y^2 = x^3+10x+2\) over \(\mathbb{F}_{11}\)
\(y^2 = x^3+9x\) over \(\mathbb{F}_{11}\)
\(y^2 = x^3+10x+2\) over \(\mathbb{F}_{11}\)
\((3,2) + (6,5) = \)
\((3,9)\)
\(y^2 = x^3+10x+2\) over \(\mathbb{F}_{11}\)
\((3,2) + (6,5) = \)
\((3,9)\)
\((3,9)+(5,10) = \)
\((6,6)\)
\(n =\texttt{FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141}\)
\(P:\)
By Suyash Bagad
A brief presentation on all things Aztec as a buildup towards Aztec 3.0.